【前端运维】k8s基础 (第一部分)

前言

公司要做一个k8s编排容器的后台系统,所以学习一下k8s的内容,目前是从某开源的(react + node)k8s运维项目开始的,这个项目做下来,也就意味着我是UI(毕业后做过两年UI),前端、后端、运维全打通了。。。(其实也挺好,做业务的时候顺便就把技术学了。。。)

学习过程中,各种资源眼花缭乱,但对于入门我直到发现B站(某马)的免费培训课程,真的是激动,大概花了1周,基本上k8s各种基本操作已经跟我的docker使用熟练度差不多了。本文是自己看了之后的笔记。

顺便提一下

要了解k8s为什么出现,就要从容器部署来说了。容器部署(比如docker)虽然让开发人员也可以轻松部署项目,但是也有一些缺点,比如说:

  • 一个容器停机了,怎么让另一个容器去顶替
  • 当并发变大的时候,怎么做到横向拓展容器数量
  • 。。。等等,也就是实现自动化运维

这些容器管理的问题统称为容器编排问题,由此而产生了一些容器编排的软件,k8s就是其中的佼佼者。

1、准备环境

建议大家使用一个叫做minikube的软件,可以模拟k8s集群环境,是非常好的练习工具(我是在mac环境中部署的)。

下载网页:minikube.sigs.k8s.io/docs/start/

详细使用可以参考:juejin.cn/post/697798…

2、kubernetes概念

Master:集群控制节点,每个集群需要至少一个master节点负责集群的管控

Node:工作负载节点,由master分配容器到这些node工作节点上,然后node节点上的docker负责容器的运行

Pod:kubernetes的最小控制单元,容器都是运行在pod中的,一个pod中可以有1个或者多个容器

Controller:控制器,通过它来实现对pod的管理,比如启动pod、停止pod、伸缩pod的数量等等

Service:pod对外服务的统一入口,下面可以维护者同一类的多个pod

Label:标签,用于对pod进行分类,同一类pod会拥有相同的标签

NameSpace:命名空间,用来隔离pod的运行环境

3. 资源管理

3.1 资源管理介绍

在kubernetes中,所有的内容都抽象为资源,用户需要通过操作资源来管理kubernetes。

kubernetes的本质上就是一个集群系统,用户可以在集群中部署各种服务,所谓的部署服务,其实就是在kubernetes集群中运行一个个的容器,并将指定的程序跑在容器中。

kubernetes的最小管理单元是pod而不是容器,所以只能将容器放在Pod中,而kubernetes一般也不会直接管理Pod,而是通过Pod控制器来管理Pod的。

Pod可以提供服务之后,就要考虑如何访问Pod中服务,kubernetes提供了Service资源实现这个功能。

当然,如果Pod中程序的数据需要持久化,kubernetes还提供了各种存储系统。

【前端运维】k8s基础 (第一部分)

学习kubernetes的核心,就是学习如何对集群上的Pod、Pod控制器、Service、存储等各种资源进行操作

3.2 YAML语言介绍

YAML是一个类似 XML、JSON 的标记性语言。它强调以数据为中心,并不是以标识语言为重点。因而YAML本身的定义比较简单,号称”一种人性化的数据格式语言”。

<heima>
    <age>15</age>
    <address>Beijing</address>
</heima>
heima:
  age: 15
  address: Beijing

YAML的语法比较简单,主要有下面几个:

  • 大小写敏感
  • 使用缩进表示层级关系
  • 缩进不允许使用tab,只允许空格( 低版本限制 )
  • 缩进的空格数不重要,只要相同层级的元素左对齐即可
  • ‘#’表示注释

YAML支持以下几种数据类型:

  • 纯量:单个的、不可再分的值
  • 对象:键值对的集合,又称为映射(mapping)/ 哈希(hash) / 字典(dictionary)
  • 数组:一组按次序排列的值,又称为序列(sequence) / 列表(list)
# 纯量, 就是指的一个简单的值,字符串、布尔值、整数、浮点数、Null、时间、日期
# 1 布尔类型
c1: true (或者True)
# 2 整型
c2: 234
# 3 浮点型
c3: 3.14
# 4 null类型 
c4: ~  # 使用~表示null
# 5 日期类型
c5: 2018-02-17    # 日期必须使用ISO 8601格式,即yyyy-MM-dd
# 6 时间类型
c6: 2018-02-17T15:02:31+08:00  # 时间使用ISO 8601格式,时间和日期之间使用T连接,最后使用+代表时区
# 7 字符串类型
c7: heima     # 简单写法,直接写值 , 如果字符串中间有特殊字符,必须使用双引号或者单引号包裹 
c8: line1
    line2     # 字符串过多的情况可以拆成多行,每一行会被转化成一个空格
# 对象
# 形式一(推荐):
heima:
  age: 15
  address: Beijing
# 形式二(了解):
heima: {age: 15,address: Beijing}
# 数组
# 形式一(推荐):
address:
  - 顺义
  - 昌平  
# 形式二(了解):
address: [顺义,昌平]

小提示:

1 书写yaml切记: 后面要加一个空格

2 如果需要将多段yaml配置放在一个文件中,中间要使用---分隔

3 下面是一个yaml转json的网站,可以通过它验证yaml是否书写正确

www.json2yaml.com/convert-yam…

3.3 资源管理方式

  • 命令式对象管理:直接使用命令去操作kubernetes资源

    kubectl run nginx-pod --image=nginx:1.17.1 --port=80
    
  • 命令式对象配置:通过命令配置和配置文件去操作kubernetes资源

    kubectl create/patch -f nginx-pod.yaml
    
  • 声明式对象配置:通过apply命令和配置文件去操作kubernetes资源

    kubectl apply -f nginx-pod.yaml
    
类型 操作对象 适用环境 优点 缺点
命令式对象管理 对象 测试 简单 只能操作活动对象,无法审计、跟踪
命令式对象配置 文件 开发 可以审计、跟踪 项目大时,配置文件多,操作麻烦
声明式对象配置 目录 开发 支持目录操作 意外情况下难以调试
3.3.1 命令式对象管理

kubectl命令

kubectl是kubernetes集群的命令行工具,通过它能够对集群本身进行管理,并能够在集群上进行容器化应用的安装部署。kubectl命令的语法如下:

kubectl [command] [type] [name] [flags]

comand:指定要对资源执行的操作,例如create、get、delete

type:指定资源类型,比如deployment、pod、service

name:指定资源的名称,名称大小写敏感

flags:指定额外的可选参数

# 查看所有pod
kubectl get pod 

# 查看某个pod
kubectl get pod pod_name

# 查看某个pod,以yaml格式展示结果
kubectl get pod pod_name -o yaml

资源类型

kubernetes中所有的内容都抽象为资源,可以通过下面的命令进行查看:

kubectl api-resources

经常使用的资源有下面这些:

资源分类 资源名称 缩写 资源作用
集群级别资源 nodes no 集群组成部分
namespaces ns 隔离Pod
pod资源 pods po 装载容器
pod资源控制器 replicationcontrollers rc 控制pod资源
replicasets rs 控制pod资源
deployments deploy 控制pod资源
daemonsets ds 控制pod资源
jobs 控制pod资源
cronjobs cj 控制pod资源
horizontalpodautoscalers hpa 控制pod资源
statefulsets sts 控制pod资源
服务发现资源 services svc 统一pod对外接口
ingress ing 统一pod对外接口
存储资源 volumeattachments 存储
persistentvolumes pv 存储
persistentvolumeclaims pvc 存储
配置资源 configmaps cm 配置
secrets 配置

操作

kubernetes允许对资源进行多种操作,可以通过–help查看详细的操作命令

kubectl --help

经常使用的操作有下面这些:

命令分类 命令 翻译 命令作用
基本命令 create 创建 创建一个资源
edit 编辑 编辑一个资源
get 获取 获取一个资源
patch 更新 更新一个资源
delete 删除 删除一个资源
explain 解释 展示资源文档
运行和调试 run 运行 在集群中运行一个指定的镜像
expose 暴露 暴露资源为Service
describe 描述 显示资源内部信息
logs 日志输出容器在 pod 中的日志 输出容器在 pod 中的日志
attach 缠绕进入运行中的容器 进入运行中的容器
exec 执行容器中的一个命令 执行容器中的一个命令
cp 复制 在Pod内外复制文件
rollout 首次展示 管理资源的发布
scale 规模 扩(缩)容Pod的数量
autoscale 自动调整 自动调整Pod的数量
高级命令 apply rc 通过文件对资源进行配置
label 标签 更新资源上的标签
其他命令 cluster-info 集群信息 显示集群信息
version 版本 显示当前Server和Client的版本

下面以一个namespace / pod的创建和删除简单演示下命令的使用:

# 创建一个namespace
[root@master ~]# kubectl create namespace dev
namespace/dev created

# 获取namespace
[root@master ~]# kubectl get ns
NAME              STATUS   AGE
default           Active   21h
dev               Active   21s
kube-node-lease   Active   21h
kube-public       Active   21h
kube-system       Active   21h

# 在此namespace下创建并运行一个nginx的Pod
[root@master ~]# kubectl run pod --image=nginx:latest -n dev
kubectl run --generator=deployment/apps.v1 is DEPRECATED and will be removed in a future version. Use kubectl run --generator=run-pod/v1 or kubectl create instead.
deployment.apps/pod created

# 查看新创建的pod
[root@master ~]# kubectl get pod -n dev
NAME  READY   STATUS    RESTARTS   AGE
pod   1/1     Running   0          21s

# 删除指定的pod
[root@master ~]# kubectl delete pod pod-864f9875b9-pcw7x
pod "pod" deleted

# 删除指定的namespace
[root@master ~]# kubectl delete ns dev
namespace "dev" deleted

3.3.2 命令式对象配置

命令式对象配置就是使用命令配合配置文件一起来操作kubernetes资源。

1) 创建一个nginxpod.yaml,内容如下:

apiVersion: v1
kind: Namespace
metadata:
  name: dev

---

apiVersion: v1
kind: Pod
metadata:
  name: nginxpod
  namespace: dev
spec:
  containers:
  - name: nginx-containers
    image: nginx:latest

2)执行create命令,创建资源:

[root@master ~]# kubectl create -f nginxpod.yaml
namespace/dev created
pod/nginxpod created

此时发现创建了两个资源对象,分别是namespace和pod

3)执行get命令,查看资源:

[root@master ~]#  kubectl get -f nginxpod.yaml
NAME            STATUS   AGE
namespace/dev   Active   18s

NAME            READY   STATUS    RESTARTS   AGE
pod/nginxpod    1/1     Running   0          17s

这样就显示了两个资源对象的信息

4)执行delete命令,删除资源:

[root@master ~]# kubectl delete -f nginxpod.yaml
namespace "dev" deleted
pod "nginxpod" deleted

此时发现两个资源对象被删除了

总结:
    命令式对象配置的方式操作资源,可以简单的认为:命令  +  yaml配置文件(里面是命令需要的各种参数)

3.3.3 声明式对象配置

声明式对象配置跟命令式对象配置很相似,但是它只有一个命令apply。

# 首先执行一次kubectl apply -f yaml文件,发现创建了资源
[root@master ~]#  kubectl apply -f nginxpod.yaml
namespace/dev created
pod/nginxpod created

# 再次执行一次kubectl apply -f yaml文件,发现说资源没有变动
[root@master ~]#  kubectl apply -f nginxpod.yaml
namespace/dev unchanged
pod/nginxpod unchanged
总结:
    其实声明式对象配置就是使用apply描述一个资源最终的状态(在yaml中定义状态)
    使用apply操作资源:
        如果资源不存在,就创建,相当于 kubectl create
        如果资源已存在,就更新,相当于 kubectl patch

扩展:kubectl可以在node节点上运行吗 ?

kubectl的运行是需要进行配置的,它的配置文件是$HOME/.kube,如果想要在node节点运行此命令,需要将master上的.kube文件复制到node节点上,即在master节点上执行下面操作:

scp  -r  HOME/.kube   node1: HOME/

使用推荐: 三种方式应该怎么用 ?

创建/更新资源 使用声明式对象配置 kubectl apply -f XXX.yaml

删除资源 使用命令式对象配置 kubectl delete -f XXX.yaml

查询资源 使用命令式对象管理 kubectl get(describe) 资源名称

4. 实战入门

本章节将介绍如何在kubernetes集群中部署一个nginx服务,并且能够对其进行访问。

4.1 Namespace

Namespace是kubernetes系统中的一种非常重要资源,它的主要作用是用来实现多套环境的资源隔离或者多租户的资源隔离

默认情况下,kubernetes集群中的所有的Pod都是可以相互访问的。但是在实际中,可能不想让两个Pod之间进行互相的访问,那此时就可以将两个Pod划分到不同的namespace下。kubernetes通过将集群内部的资源分配到不同的Namespace中,可以形成逻辑上的”组”,以方便不同的组的资源进行隔离使用和管理。

可以通过kubernetes的授权机制,将不同的namespace交给不同租户进行管理,这样就实现了多租户的资源隔离。此时还能结合kubernetes的资源配额机制,限定不同租户能占用的资源,例如CPU使用量、内存使用量等等,来实现租户可用资源的管理。

【前端运维】k8s基础 (第一部分)

kubernetes在集群启动之后,会默认创建几个namespace

[root@master ~]# kubectl  get namespace
NAME              STATUS   AGE
default           Active   45h     #  所有未指定Namespace的对象都会被分配在default命名空间
kube-node-lease   Active   45h     #  集群节点之间的心跳维护,v1.13开始引入
kube-public       Active   45h     #  此命名空间下的资源可以被所有人访问(包括未认证用户)
kube-system       Active   45h     #  所有由Kubernetes系统创建的资源都处于这个命名空间

下面来看namespace资源的具体操作:

4.1.1 查看
# 1 查看所有的ns  命令:kubectl get ns
[root@master ~]# kubectl get ns
NAME              STATUS   AGE
default           Active   45h
kube-node-lease   Active   45h
kube-public       Active   45h     
kube-system       Active   45h     

# 2 查看指定的ns   命令:kubectl get ns ns名称
[root@master ~]# kubectl get ns default
NAME      STATUS   AGE
default   Active   45h

# 3 指定输出格式  命令:kubectl get ns ns名称  -o 格式参数
# kubernetes支持的格式有很多,比较常见的是wide、json、yaml
[root@master ~]# kubectl get ns default -o yaml
apiVersion: v1
kind: Namespace
metadata:
  creationTimestamp: "2021-05-08T04:44:16Z"
  name: default
  resourceVersion: "151"
  selfLink: /api/v1/namespaces/default
  uid: 7405f73a-e486-43d4-9db6-145f1409f090
spec:
  finalizers:
  - kubernetes
status:
  phase: Active
  
# 4 查看ns详情  命令:kubectl describe ns ns名称
[root@master ~]# kubectl describe ns default
Name:         default
Labels:       <none>
Annotations:  <none>
Status:       Active  # Active 命名空间正在使用中  Terminating 正在删除命名空间

# ResourceQuota 针对namespace做的资源限制
# LimitRange针对namespace中的每个组件做的资源限制
No resource quota.
No LimitRange resource.
4.1.2 创建
# 创建namespace
[root@master ~]# kubectl create ns dev
namespace/dev created
4.1.3 删除
# 删除namespace
[root@master ~]# kubectl delete ns dev
namespace "dev" deleted
4.1.4 配置方式

首先准备一个yaml文件:ns-dev.yaml

apiVersion: v1
kind: Namespace
metadata:
  name: dev

然后就可以执行对应的创建和删除命令了:

创建:kubectl create -f ns-dev.yaml

删除:kubectl delete -f ns-dev.yaml

4.2 Pod

Pod是kubernetes集群进行管理的最小单元,程序要运行必须部署在容器中,而容器必须存在于Pod中。

Pod可以认为是容器的封装,一个Pod中可以存在一个或者多个容器。

【前端运维】k8s基础 (第一部分)

kubernetes在集群启动之后,集群中的各个组件也都是以Pod方式运行的。可以通过下面命令查看:

[root@master ~]# kubectl get pod -n kube-system
NAMESPACE     NAME                             READY   STATUS    RESTARTS   AGE
kube-system   coredns-6955765f44-68g6v         1/1     Running   0          2d1h
kube-system   coredns-6955765f44-cs5r8         1/1     Running   0          2d1h
kube-system   etcd-master                      1/1     Running   0          2d1h
kube-system   kube-apiserver-master            1/1     Running   0          2d1h
kube-system   kube-controller-manager-master   1/1     Running   0          2d1h
kube-system   kube-flannel-ds-amd64-47r25      1/1     Running   0          2d1h
kube-system   kube-flannel-ds-amd64-ls5lh      1/1     Running   0          2d1h
kube-system   kube-proxy-685tk                 1/1     Running   0          2d1h
kube-system   kube-proxy-87spt                 1/1     Running   0          2d1h
kube-system   kube-scheduler-master            1/1     Running   0          2d1h
4.2.1 创建并运行

kubernetes没有提供单独运行Pod的命令,都是通过Pod控制器来实现的

# 命令格式: kubectl run (pod控制器名称) [参数] 
# --image  指定Pod的镜像
# --port   指定端口
# --namespace  指定namespace
[root@master ~]# kubectl run nginx --image=nginx:latest --port=80 --namespace dev 
deployment.apps/nginx created
4.2.2 查看pod信息
# 查看Pod基本信息
[root@master ~]# kubectl get pods -n dev
NAME    READY   STATUS    RESTARTS   AGE
nginx   1/1     Running   0          43s

# 查看Pod的详细信息
[root@master ~]# kubectl describe pod nginx -n dev
Name:         nginx
Namespace:    dev
Priority:     0
Node:         node1/192.168.5.4
Start Time:   Wed, 08 May 2021 09:29:24 +0800
Labels:       pod-template-hash=5ff7956ff6
              run=nginx
Annotations:  <none>
Status:       Running
IP:           10.244.1.23
IPs:
  IP:           10.244.1.23
Controlled By:  ReplicaSet/nginx
Containers:
  nginx:
    Container ID:   docker://4c62b8c0648d2512380f4ffa5da2c99d16e05634979973449c98e9b829f6253c
    Image:          nginx:latest
    Image ID:       docker-pullable://nginx@sha256:485b610fefec7ff6c463ced9623314a04ed67e3945b9c08d7e53a47f6d108dc7
    Port:           80/TCP
    Host Port:      0/TCP
    State:          Running
      Started:      Wed, 08 May 2021 09:30:01 +0800
    Ready:          True
    Restart Count:  0
    Environment:    <none>
    Mounts:
      /var/run/secrets/kubernetes.io/serviceaccount from default-token-hwvvw (ro)
Conditions:
  Type              Status
  Initialized       True
  Ready             True
  ContainersReady   True
  PodScheduled      True
Volumes:
  default-token-hwvvw:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  default-token-hwvvw
    Optional:    false
QoS Class:       BestEffort
Node-Selectors:  <none>
Tolerations:     node.kubernetes.io/not-ready:NoExecute for 300s
                 node.kubernetes.io/unreachable:NoExecute for 300s
Events:
  Type    Reason     Age        From               Message
  ----    ------     ----       ----               -------
  Normal  Scheduled  <unknown>  default-scheduler  Successfully assigned dev/nginx-5ff7956ff6-fg2db to node1
  Normal  Pulling    4m11s      kubelet, node1     Pulling image "nginx:latest"
  Normal  Pulled     3m36s      kubelet, node1     Successfully pulled image "nginx:latest"
  Normal  Created    3m36s      kubelet, node1     Created container nginx
  Normal  Started    3m36s      kubelet, node1     Started container nginx
4.2.3 访问Pod
# 获取podIP
[root@master ~]# kubectl get pods -n dev -o wide
NAME    READY   STATUS    RESTARTS   AGE    IP             NODE    ... 
nginx   1/1     Running   0          190s   10.244.1.23   node1   ...

#访问POD
[root@master ~]# curl http://10.244.1.23:80
<!DOCTYPE html>
<html>
<head>
	<title>Welcome to nginx!</title>
</head>
<body>
	<p><em>Thank you for using nginx.</em></p>
</body>
</html>
4.2.4 删除指定Pod
# 删除指定Pod
[root@master ~]# kubectl delete pod nginx -n dev
pod "nginx" deleted

# 此时,显示删除Pod成功,但是再查询,发现又新产生了一个 
[root@master ~]# kubectl get pods -n dev
NAME    READY   STATUS    RESTARTS   AGE
nginx   1/1     Running   0          21s

# 这是因为当前Pod是由Pod控制器创建的,控制器会监控Pod状况,一旦发现Pod死亡,会立即重建
# 此时要想删除Pod,必须删除Pod控制器

# 先来查询一下当前namespace下的Pod控制器
[root@master ~]# kubectl get deploy -n  dev
NAME    READY   UP-TO-DATE   AVAILABLE   AGE
nginx   1/1     1            1           9m7s

# 接下来,删除此PodPod控制器
[root@master ~]# kubectl delete deploy nginx -n dev
deployment.apps "nginx" deleted

# 稍等片刻,再查询Pod,发现Pod被删除了
[root@master ~]# kubectl get pods -n dev
No resources found in dev namespace.
4.2.5 配置操作

创建一个pod-nginx.yaml,内容如下:

apiVersion: v1
kind: Pod
metadata:
  name: nginx
  namespace: dev
spec:
  containers:
  - image: nginx:latest
    name: pod
    ports:
    - name: nginx-port
      containerPort: 80
      protocol: TCP

然后就可以执行对应的创建和删除命令了:

创建:kubectl create -f pod-nginx.yaml

删除:kubectl delete -f pod-nginx.yaml

4.3 Label

Label是kubernetes系统中的一个重要概念。它的作用就是在资源上添加标识,用来对它们进行区分和选择。

Label的特点:

  • 一个Label会以key/value键值对的形式附加到各种对象上,如Node、Pod、Service等等
  • 一个资源对象可以定义任意数量的Label ,同一个Label也可以被添加到任意数量的资源对象上去
  • Label通常在资源对象定义时确定,当然也可以在对象创建后动态添加或者删除

可以通过Label实现资源的多维度分组,以便灵活、方便地进行资源分配、调度、配置、部署等管理工作。

一些常用的Label 示例如下:

  • 版本标签:”version”:”release”, “version”:”stable”……
  • 环境标签:”environment”:”dev”,”environment”:”test”,”environment”:”pro”
  • 架构标签:”tier”:”frontend”,”tier”:”backend”

标签定义完毕之后,还要考虑到标签的选择,这就要使用到Label Selector,即:

Label用于给某个资源对象定义标识

Label Selector用于查询和筛选拥有某些标签的资源对象

当前有两种Label Selector:

  • 基于等式的Label Selector

    name = slave: 选择所有包含Label中key=”name”且value=”slave”的对象

    env != production: 选择所有包括Label中的key=”env”且value不等于”production”的对象

  • 基于集合的Label Selector

    name in (master, slave): 选择所有包含Label中的key=”name”且value=”master”或”slave”的对象

    name not in (frontend): 选择所有包含Label中的key=”name”且value不等于”frontend”的对象

标签的选择条件可以使用多个,此时将多个Label Selector进行组合,使用逗号”,”进行分隔即可。例如:

name=slave,env!=production

name not in (frontend),env!=production

4.3.1 命令方式
# 为pod资源打标签
[root@master ~]# kubectl label pod nginx-pod version=1.0 -n dev
pod/nginx-pod labeled

# 为pod资源更新标签
[root@master ~]# kubectl label pod nginx-pod version=2.0 -n dev --overwrite
pod/nginx-pod labeled

# 查看标签
[root@master ~]# kubectl get pod nginx-pod  -n dev --show-labels
NAME        READY   STATUS    RESTARTS   AGE   LABELS
nginx-pod   1/1     Running   0          10m   version=2.0

# 筛选标签
[root@master ~]# kubectl get pod -n dev -l version=2.0  --show-labels
NAME        READY   STATUS    RESTARTS   AGE   LABELS
nginx-pod   1/1     Running   0          17m   version=2.0
[root@master ~]# kubectl get pod -n dev -l version!=2.0 --show-labels
No resources found in dev namespace.

#删除标签
[root@master ~]# kubectl label pod nginx-pod -n dev tier-
pod/nginx unlabeled
4.3.2 配置方式
apiVersion: v1
kind: Pod
metadata:
  name: nginx
  namespace: dev
  labels:
    version: "3.0" 
    env: "test"
spec:
  containers:
  - image: nginx:latest
    name: pod
    ports:
    - name: nginx-port
      containerPort: 80
      protocol: TCP

然后就可以执行对应的更新命令了:kubectl apply -f pod-nginx.yaml

4.4 Deployment

在kubernetes中,Pod是最小的控制单元,但是kubernetes很少直接控制Pod,一般都是通过Pod控制器来完成的。Pod控制器用于pod的管理,确保pod资源符合预期的状态,当pod的资源出现故障时,会尝试进行重启或重建pod。

在kubernetes中Pod控制器的种类有很多,本章节只介绍一种:Deployment。

【前端运维】k8s基础 (第一部分)

4.4.1 命令操作
# 命令格式: kubectl create deployment 名称  [参数] 
# --image  指定pod的镜像
# --port   指定端口
# --replicas  指定创建pod数量
# --namespace  指定namespace
[root@master ~]# kubectl run nginx --image=nginx:latest --port=80 --replicas=3 -n dev
deployment.apps/nginx created

# 查看创建的Pod
[root@master ~]# kubectl get pods -n dev
NAME                     READY   STATUS    RESTARTS   AGE
nginx-5ff7956ff6-6k8cb   1/1     Running   0          19s
nginx-5ff7956ff6-jxfjt   1/1     Running   0          19s
nginx-5ff7956ff6-v6jqw   1/1     Running   0          19s

# 查看deployment的信息
[root@master ~]# kubectl get deploy -n dev
NAME    READY   UP-TO-DATE   AVAILABLE   AGE
nginx   3/3     3            3           2m42s

# UP-TO-DATE:成功升级的副本数量
# AVAILABLE:可用副本的数量
[root@master ~]# kubectl get deploy -n dev -o wide
NAME    READY UP-TO-DATE  AVAILABLE   AGE     CONTAINERS   IMAGES              SELECTOR
nginx   3/3     3         3           2m51s   nginx        nginx:latest        run=nginx

# 查看deployment的详细信息
[root@master ~]# kubectl describe deploy nginx -n dev
Name:                   nginx
Namespace:              dev
CreationTimestamp:      Wed, 08 May 2021 11:14:14 +0800
Labels:                 run=nginx
Annotations:            deployment.kubernetes.io/revision: 1
Selector:               run=nginx
Replicas:               3 desired | 3 updated | 3 total | 3 available | 0 unavailable
StrategyType:           RollingUpdate
MinReadySeconds:        0
RollingUpdateStrategy:  25% max unavailable, 25% max 违规词汇
Pod Template:
  Labels:  run=nginx
  Containers:
   nginx:
    Image:        nginx:latest
    Port:         80/TCP
    Host Port:    0/TCP
    Environment:  <none>
    Mounts:       <none>
  Volumes:        <none>
Conditions:
  Type           Status  Reason
  ----           ------  ------
  Available      True    MinimumReplicasAvailable
  Progressing    True    NewReplicaSetAvailable
OldReplicaSets:  <none>
NewReplicaSet:   nginx-5ff7956ff6 (3/3 replicas created)
Events:
  Type    Reason             Age    From                   Message
  ----    ------             ----   ----                   -------
  Normal  ScalingReplicaSet  5m43s  deployment-controller  Scaled up replicaset nginx-5ff7956ff6 to 3
  
# 删除 
[root@master ~]# kubectl delete deploy nginx -n dev
deployment.apps "nginx" deleted
4.4.2 配置操作

创建一个deploy-nginx.yaml,内容如下:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx
  namespace: dev
spec:
  replicas: 3
  selector:
    matchLabels:
      run: nginx
  template:
    metadata:
      labels:
        run: nginx
    spec:
      containers:
      - image: nginx:latest
        name: nginx
        ports:
        - containerPort: 80
          protocol: TCP

然后就可以执行对应的创建和删除命令了:

创建:kubectl create -f deploy-nginx.yaml

删除:kubectl delete -f deploy-nginx.yaml

4.5 Service

通过上节课的学习,已经能够利用Deployment来创建一组Pod来提供具有高可用性的服务。

虽然每个Pod都会分配一个单独的Pod IP,然而却存在如下两问题:

  • Pod IP 会随着Pod的重建产生变化
  • Pod IP 仅仅是集群内可见的虚拟IP,外部无法访问

这样对于访问这个服务带来了难度。因此,kubernetes设计了Service来解决这个问题。

Service可以看作是一组同类Pod对外的访问接口。借助Service,应用可以方便地实现服务发现和负载均衡。

【前端运维】k8s基础 (第一部分)

4.5.1 创建集群内部可访问的Service
# 暴露Service
[root@master ~]# kubectl expose deploy nginx --name=svc-nginx1 --type=ClusterIP --port=80 --target-port=80 -n dev
service/svc-nginx1 exposed

# 查看service
[root@master ~]# kubectl get svc svc-nginx1 -n dev -o wide
NAME         TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)   AGE     SELECTOR
svc-nginx1   ClusterIP   10.109.179.231   <none>        80/TCP    3m51s   run=nginx

# 这里产生了一个CLUSTER-IP,这就是service的IP,在Service的生命周期中,这个地址是不会变动的
# 可以通过这个IP访问当前service对应的POD
[root@master ~]# curl 10.109.179.231:80
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
</head>
<body>
<h1>Welcome to nginx!</h1>
.......
</body>
</html>
4.5.2 创建集群外部也可访问的Service
# 上面创建的Service的type类型为ClusterIP,这个ip地址只用集群内部可访问
# 如果需要创建外部也可以访问的Service,需要修改type为NodePort
[root@master ~]# kubectl expose deploy nginx --name=svc-nginx2 --type=NodePort --port=80 --target-port=80 -n dev
service/svc-nginx2 exposed

# 此时查看,会发现出现了NodePort类型的Service,而且有一对Port(80:31928/TC)
[root@master ~]# kubectl get svc  svc-nginx2  -n dev -o wide
NAME          TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)        AGE    SELECTOR
svc-nginx2    NodePort    10.100.94.0      <none>        80:31928/TCP   9s     run=nginx

# 接下来就可以通过集群外的主机访问 节点IP:31928访问服务了
# 例如在的电脑主机上通过浏览器访问下面的地址
http://192.168.90.100:31928/
4.5.3 删除Service
[root@master ~]# kubectl delete svc svc-nginx-1 -n dev 
service "svc-nginx-1" deleted
4.5.4 配置方式

创建一个svc-nginx.yaml,内容如下:

apiVersion: v1
kind: Service
metadata:
  name: svc-nginx
  namespace: dev
spec:
  clusterIP: 10.109.179.231 #固定svc的内网ip
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    run: nginx
  type: ClusterIP

然后就可以执行对应的创建和删除命令了:

创建:kubectl create -f svc-nginx.yaml

删除:kubectl delete -f svc-nginx.yaml

小结

至此,已经掌握了Namespace、Pod、Deployment、Service资源的基本操作,有了这些操作,就可以在kubernetes集群中实现一个服务的简单部署和访问了,但是如果想要更好的使用kubernetes,就需要深入学习这几种资源的细节和原理。

5. Pod详解

5.1 Pod介绍

5.1.1 Pod结构

【前端运维】k8s基础 (第一部分)

每个Pod中都可以包含一个或者多个容器,这些容器可以分为两类:

  • 用户程序所在的容器,数量可多可少

  • Pause容器,这是每个Pod都会有的一个根容器,它的作用有两个:

    • 可以以它为依据,评估整个Pod的健康状态

    • 可以在根容器上设置Ip地址,其它容器都此Ip(Pod IP),以实现Pod内部的网路通信

      这里是Pod内部的通讯,Pod的之间的通讯采用虚拟二层网络技术来实现,我们当前环境用的是Flannel
      
5.1.2 Pod定义

下面是Pod的资源清单:

apiVersion: v1     #必选,版本号,例如v1
kind: Pod         #必选,资源类型,例如 Pod
metadata:         #必选,元数据
  name: string     #必选,Pod名称
  namespace: string  #Pod所属的命名空间,默认为"default"
  labels:           #自定义标签列表
    - name: string                 
spec:  #必选,Pod中容器的详细定义
  containers:  #必选,Pod中容器列表
  - name: string   #必选,容器名称
    image: string  #必选,容器的镜像名称
    imagePullPolicy: [ Always|Never|IfNotPresent ]  #获取镜像的策略 
    command: [string]   #容器的启动命令列表,如不指定,使用打包时使用的启动命令
    args: [string]      #容器的启动命令参数列表
    workingDir: string  #容器的工作目录
    volumeMounts:       #挂载到容器内部的存储卷配置
    - name: string      #引用pod定义的共享存储卷的名称,需用volumes[]部分定义的的卷名
      mountPath: string #存储卷在容器内mount的绝对路径,应少于512字符
      readOnly: boolean #是否为只读模式
    ports: #需要暴露的端口库号列表
    - name: string        #端口的名称
      containerPort: int  #容器需要监听的端口号
      hostPort: int       #容器所在主机需要监听的端口号,默认与Container相同
      protocol: string    #端口协议,支持TCP和UDP,默认TCP
    env:   #容器运行前需设置的环境变量列表
    - name: string  #环境变量名称
      value: string #环境变量的值
    resources: #资源限制和请求的设置
      limits:  #资源限制的设置
        cpu: string     #Cpu的限制,单位为core数,将用于docker run --cpu-shares参数
        memory: string  #内存限制,单位可以为Mib/Gib,将用于docker run --memory参数
      requests: #资源请求的设置
        cpu: string    #Cpu请求,容器启动的初始可用数量
        memory: string #内存请求,容器启动的初始可用数量
    lifecycle: #生命周期钩子
        postStart: #容器启动后立即执行此钩子,如果执行失败,会根据重启策略进行重启
        preStop: #容器终止前执行此钩子,无论结果如何,容器都会终止
    livenessProbe:  #对Pod内各容器健康检查的设置,当探测无响应几次后将自动重启该容器
      exec:         #对Pod容器内检查方式设置为exec方式
        command: [string]  #exec方式需要制定的命令或脚本
      httpGet:       #对Pod内个容器健康检查方法设置为HttpGet,需要制定Path、port
        path: string
        port: number
        host: string
        scheme: string
        HttpHeaders:
        - name: string
          value: string
      tcpSocket:     #对Pod内个容器健康检查方式设置为tcpSocket方式
         port: number
       initialDelaySeconds: 0       #容器启动完成后首次探测的时间,单位为秒
       timeoutSeconds: 0          #对容器健康检查探测等待响应的超时时间,单位秒,默认1秒
       periodSeconds: 0           #对容器监控检查的定期探测时间设置,单位秒,默认10秒一次
       successThreshold: 0
       failureThreshold: 0
       securityContext:
         privileged: false
  restartPolicy: [Always | Never | OnFailure]  #Pod的重启策略
  nodeName: <string> #设置NodeName表示将该Pod调度到指定到名称的node节点上
  nodeSelector: obeject #设置NodeSelector表示将该Pod调度到包含这个label的node上
  imagePullSecrets: #Pull镜像时使用的secret名称,以key:secretkey格式指定
  - name: string
  hostNetwork: false   #是否使用主机网络模式,默认为false,如果设置为true,表示使用宿主机网络
  volumes:   #在该pod上定义共享存储卷列表
  - name: string    #共享存储卷名称 (volumes类型有很多种)
    emptyDir: {}       #类型为emtyDir的存储卷,与Pod同生命周期的一个临时目录。为空值
    hostPath: string   #类型为hostPath的存储卷,表示挂载Pod所在宿主机的目录
      path: string                #Pod所在宿主机的目录,将被用于同期中mount的目录
    secret:          #类型为secret的存储卷,挂载集群与定义的secret对象到容器内部
      scretname: string  
      items:     
      - key: string
        path: string
    configMap:         #类型为configMap的存储卷,挂载预定义的configMap对象到容器内部
      name: string
      items:
      - key: string
        path: string
#小提示:
#   在这里,可通过一个命令来查看每种资源的可配置项
#   kubectl explain 资源类型         查看某种资源可以配置的一级属性
#   kubectl explain 资源类型.属性     查看属性的子属性
[root@k8s-master01 ~]# kubectl explain pod
KIND:     Pod
VERSION:  v1
FIELDS:
   apiVersion   <string>
   kind <string>
   metadata     <Object>
   spec <Object>
   status       <Object>

[root@k8s-master01 ~]# kubectl explain pod.metadata
KIND:     Pod
VERSION:  v1
RESOURCE: metadata <Object>
FIELDS:
   annotations  <map[string]string>
   clusterName  <string>
   creationTimestamp    <string>
   deletionGracePeriodSeconds   <integer>
   deletionTimestamp    <string>
   finalizers   <[]string>
   generateName <string>
   generation   <integer>
   labels       <map[string]string>
   managedFields        <[]Object>
   name <string>
   namespace    <string>
   ownerReferences      <[]Object>
   resourceVersion      <string>
   selfLink     <string>
   uid  <string>

在kubernetes中基本所有资源的一级属性都是一样的,主要包含5部分:

  • apiVersion 版本,由kubernetes内部定义,版本号必须可以用 kubectl api-versions 查询到
  • kind 类型,由kubernetes内部定义,版本号必须可以用 kubectl api-resources 查询到
  • metadata 元数据,主要是资源标识和说明,常用的有name、namespace、labels等
  • spec 描述,这是配置中最重要的一部分,里面是对各种资源配置的详细描述
  • status 状态信息,里面的内容不需要定义,由kubernetes自动生成

    在上面的属性中,spec是接下来研究的重点,继续看下它的常见子属性:

    • containers <[]Object> 容器列表,用于定义容器的详细信息
    • nodeName 根据nodeName的值将pod调度到指定的Node节点上
    • nodeSelector <map[]> 根据NodeSelector中定义的信息选择将该Pod调度到包含这些label的Node 上
    • hostNetwork 是否使用主机网络模式,默认为false,如果设置为true,表示使用宿主机网络
    • volumes <[]Object> 存储卷,用于定义Pod上面挂在的存储信息
    • restartPolicy 重启策略,表示Pod在遇到故障的时候的处理策略

    5.2 Pod配置

    本小节主要来研究pod.spec.containers属性,这也是pod配置中最为关键的一项配置。

    [root@k8s-master01 ~]# kubectl explain pod.spec.containers
    KIND:     Pod
    VERSION:  v1
    RESOURCE: containers <[]Object>   # 数组,代表可以有多个容器
    FIELDS:
       name  <string>     # 容器名称
       image <string>     # 容器需要的镜像地址
       imagePullPolicy  <string> # 镜像拉取策略 
       command  <[]string> # 容器的启动命令列表,如不指定,使用打包时使用的启动命令
       args     <[]string> # 容器的启动命令需要的参数列表
       env      <[]Object> # 容器环境变量的配置
       ports    <[]Object>     # 容器需要暴露的端口号列表
       resources <Object>      # 资源限制和资源请求的设置
    
    5.2.1 基本配置

    创建pod-base.yaml文件,内容如下:

    apiVersion: v1
    kind: Pod
    metadata:
      name: pod-base
      namespace: dev
      labels:
        user: heima
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
      - name: busybox
        image: busybox:1.30
    

    【前端运维】k8s基础 (第一部分)
    上面定义了一个比较简单Pod的配置,里面有两个容器:

    • nginx:用1.17.1版本的nginx镜像创建,(nginx是一个轻量级web容器)
    • busybox:用1.30版本的busybox镜像创建,(busybox是一个小巧的linux命令集合)
    # 创建Pod
    [root@k8s-master01 pod]# kubectl apply -f pod-base.yaml
    pod/pod-base created
    
    # 查看Pod状况
    # READY 1/2 : 表示当前Pod中有2个容器,其中1个准备就绪,1个未就绪
    # RESTARTS  : 重启次数,因为有1个容器故障了,Pod一直在重启试图恢复它
    [root@k8s-master01 pod]# kubectl get pod -n dev
    NAME       READY   STATUS    RESTARTS   AGE
    pod-base   1/2     Running   4          95s
    
    # 可以通过describe查看内部的详情
    # 此时已经运行起来了一个基本的Pod,虽然它暂时有问题
    [root@k8s-master01 pod]# kubectl describe pod pod-base -n dev
    
    5.2.2 镜像拉取

    创建pod-imagepullpolicy.yaml文件,内容如下:

    apiVersion: v1
    kind: Pod
    metadata:
      name: pod-imagepullpolicy
      namespace: dev
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
        imagePullPolicy: Never # 用于设置镜像拉取策略
      - name: busybox
        image: busybox:1.30
    

    【前端运维】k8s基础 (第一部分)

    imagePullPolicy,用于设置镜像拉取策略,kubernetes支持配置三种拉取策略:

    • Always:总是从远程仓库拉取镜像(一直远程下载)
    • IfNotPresent:本地有则使用本地镜像,本地没有则从远程仓库拉取镜像(本地有就本地 本地没远程下载)
    • Never:只使用本地镜像,从不去远程仓库拉取,本地没有就报错 (一直使用本地)

    默认值说明:

    如果镜像tag为具体版本号, 默认策略是:IfNotPresent

    如果镜像tag为:latest(最终版本) ,默认策略是always

    # 创建Pod
    [root@k8s-master01 pod]# kubectl create -f pod-imagepullpolicy.yaml
    pod/pod-imagepullpolicy created
    
    # 查看Pod详情
    # 此时明显可以看到nginx镜像有一步Pulling image "nginx:1.17.1"的过程
    [root@k8s-master01 pod]# kubectl describe pod pod-imagepullpolicy -n dev
    ......
    Events:
      Type     Reason     Age               From               Message
      ----     ------     ----              ----               -------
      Normal   Scheduled  <unknown>         default-scheduler  Successfully assigned dev/pod-imagePullPolicy to node1
      Normal   Pulling    32s               kubelet, node1     Pulling image "nginx:1.17.1"
      Normal   Pulled     26s               kubelet, node1     Successfully pulled image "nginx:1.17.1"
      Normal   Created    26s               kubelet, node1     Created container nginx
      Normal   Started    25s               kubelet, node1     Started container nginx
      Normal   Pulled     7s (x3 over 25s)  kubelet, node1     Container image "busybox:1.30" already present on machine
      Normal   Created    7s (x3 over 25s)  kubelet, node1     Created container busybox
      Normal   Started    7s (x3 over 25s)  kubelet, node1     Started container busybox
    
    5.2.3 启动命令

    在前面的案例中,一直有一个问题没有解决,就是的busybox容器一直没有成功运行,那么到底是什么原因导致这个容器的故障呢?

    原来busybox并不是一个程序,而是类似于一个工具类的集合,kubernetes集群启动管理后,它会自动关闭。解决方法就是让其一直在运行,这就用到了command配置。

    创建pod-command.yaml文件,内容如下:

    apiVersion: v1
    kind: Pod
    metadata:
      name: pod-command
      namespace: dev
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
      - name: busybox
        image: busybox:1.30
        command: ["/bin/sh","-c","touch /tmp/hello.txt;while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done;"]
    

    【前端运维】k8s基础 (第一部分)

    command,用于在pod中的容器初始化完毕之后运行一个命令。

    稍微解释下上面命令的意思:

    “/bin/sh”,”-c”, 使用sh执行命令

    touch /tmp/hello.txt; 创建一个/tmp/hello.txt 文件

    while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done; 每隔3秒向文件中写入当前时间

    # 创建Pod
    [root@k8s-master01 pod]# kubectl create  -f pod-command.yaml
    pod/pod-command created
    
    # 查看Pod状态
    # 此时发现两个pod都正常运行了
    [root@k8s-master01 pod]# kubectl get pods pod-command -n dev
    NAME          READY   STATUS   RESTARTS   AGE
    pod-command   2/2     Runing   0          2s
    
    # 进入pod中的busybox容器,查看文件内容
    # 补充一个命令: kubectl exec  pod名称 -n 命名空间 -it -c 容器名称 /bin/sh  在容器内部执行命令
    # 使用这个命令就可以进入某个容器的内部,然后进行相关操作了
    # 比如,可以查看txt文件的内容
    [root@k8s-master01 pod]# kubectl exec pod-command -n dev -it -c busybox /bin/sh
    / # tail -f /tmp/hello.txt
    14:44:19
    14:44:22
    14:44:25
    
    特别说明:
        通过上面发现command已经可以完成启动命令和传递参数的功能,为什么这里还要提供一个args选项,用于传递参数呢?这其实跟docker有点关系,kubernetes中的command、args两项其实是实现覆盖Dockerfile中ENTRYPOINT的功能。
     1 如果command和args均没有写,那么用Dockerfile的配置。
     2 如果command写了,但args没有写,那么Dockerfile默认的配置会被忽略,执行输入的command
     3 如果command没写,但args写了,那么Dockerfile中配置的ENTRYPOINT的命令会被执行,使用当前args的参数
     4 如果command和args都写了,那么Dockerfile的配置被忽略,执行command并追加上args参数
    
    5.2.4 环境变量

    创建pod-env.yaml文件,内容如下:

    apiVersion: v1
    kind: Pod
    metadata:
      name: pod-env
      namespace: dev
    spec:
      containers:
      - name: busybox
        image: busybox:1.30
        command: ["/bin/sh","-c","while true;do /bin/echo $(date +%T);sleep 60; done;"]
        env: # 设置环境变量列表
        - name: "username"
          value: "admin"
        - name: "password"
          value: "123456"
    

    env,环境变量,用于在pod中的容器设置环境变量。

    # 创建Pod
    [root@k8s-master01 ~]# kubectl create -f pod-env.yaml
    pod/pod-env created
    
    # 进入容器,输出环境变量
    [root@k8s-master01 ~]# kubectl exec pod-env -n dev -c busybox -it /bin/sh
    / # echo $username
    admin
    / # echo $password
    123456
    

    这种方式不是很推荐,推荐将这些配置单独存储在配置文件中,这种方式将在后面介绍。

    5.2.5 端口设置

    本小节来介绍容器的端口设置,也就是containers的ports选项。

    首先看下ports支持的子选项:

    [root@k8s-master01 ~]# kubectl explain pod.spec.containers.ports
    KIND:     Pod
    VERSION:  v1
    RESOURCE: ports <[]Object>
    FIELDS:
       name         <string>  # 端口名称,如果指定,必须保证name在pod中是唯一的		
       containerPort<integer> # 容器要监听的端口(0<x<65536)
       hostPort     <integer> # 容器要在主机上公开的端口,如果设置,主机上只能运行容器的一个副本(一般省略) 
       hostIP       <string>  # 要将外部端口绑定到的主机IP(一般省略)
       protocol     <string>  # 端口协议。必须是UDP、TCP或SCTP。默认为“TCP”。
    

    接下来,编写一个测试案例,创建pod-ports.yaml

    apiVersion: v1
    kind: Pod
    metadata:
      name: pod-ports
      namespace: dev
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
        ports: # 设置容器暴露的端口列表
        - name: nginx-port
          containerPort: 80
          protocol: TCP
    
    # 创建Pod
    [root@k8s-master01 ~]# kubectl create -f pod-ports.yaml
    pod/pod-ports created
    
    # 查看pod
    # 在下面可以明显看到配置信息
    [root@k8s-master01 ~]# kubectl get pod pod-ports -n dev -o yaml
    ......
    spec:
      containers:
      - image: nginx:1.17.1
        imagePullPolicy: IfNotPresent
        name: nginx
        ports:
        - containerPort: 80
          name: nginx-port
          protocol: TCP
    ......
    

    访问容器中的程序需要使用的是Podip:containerPort

    5.2.6 资源配额

    容器中的程序要运行,肯定是要占用一定资源的,比如cpu和内存等,如果不对某个容器的资源做限制,那么它就可能吃掉大量资源,导致其它容器无法运行。针对这种情况,kubernetes提供了对内存和cpu的资源进行配额的机制,这种机制主要通过resources选项实现,他有两个子选项:

    • limits:用于限制运行时容器的最大占用资源,当容器占用资源超过limits时会被终止,并进行重启
    • requests :用于设置容器需要的最小资源,如果环境资源不够,容器将无法启动

    可以通过上面两个选项设置资源的上下限。

    接下来,编写一个测试案例,创建pod-resources.yaml

    apiVersion: v1
    kind: Pod
    metadata:
      name: pod-resources
      namespace: dev
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
        resources: # 资源配额
          limits:  # 限制资源(上限)
            cpu: "2" # CPU限制,单位是core数
            memory: "10Gi" # 内存限制
          requests: # 请求资源(下限)
            cpu: "1"  # CPU限制,单位是core数
            memory: "10Mi"  # 内存限制
    

    在这对cpu和memory的单位做一个说明:

    • cpu:core数,可以为整数或小数
    • memory: 内存大小,可以使用Gi、Mi、G、M等形式
    # 运行Pod
    [root@k8s-master01 ~]# kubectl create  -f pod-resources.yaml
    pod/pod-resources created
    
    # 查看发现pod运行正常
    [root@k8s-master01 ~]# kubectl get pod pod-resources -n dev
    NAME            READY   STATUS    RESTARTS   AGE  
    pod-resources   1/1     Running   0          39s   
    
    # 接下来,停止Pod
    [root@k8s-master01 ~]# kubectl delete  -f pod-resources.yaml
    pod "pod-resources" deleted
    
    # 编辑pod,修改resources.requests.memory的值为10Gi
    [root@k8s-master01 ~]# vim pod-resources.yaml
    
    # 再次启动pod
    [root@k8s-master01 ~]# kubectl create  -f pod-resources.yaml
    pod/pod-resources created
    
    # 查看Pod状态,发现Pod启动失败
    [root@k8s-master01 ~]# kubectl get pod pod-resources -n dev -o wide
    NAME            READY   STATUS    RESTARTS   AGE          
    pod-resources   0/1     Pending   0          20s    
    
    # 查看pod详情会发现,如下提示
    [root@k8s-master01 ~]# kubectl describe pod pod-resources -n dev
    ......
    Warning  FailedScheduling  35s   default-scheduler  0/3 nodes are available: 1 node(s) had taint {node-role.kubernetes.io/master: }, that the pod didn't tolerate, 2 Insufficient memory.(内存不足)
    

    5.3 Pod生命周期

    我们一般将pod对象从创建至终的这段时间范围称为pod的生命周期,它主要包含下面的过程:

    • pod创建过程
    • 运行初始化容器(init container)过程
    • 运行主容器(main container)
      • 容器启动后钩子(post start)、容器终止前钩子(pre stop)
      • 容器的存活性探测(liveness probe)、就绪性探测(readiness probe)
    • pod终止过程

    【前端运维】k8s基础 (第一部分)

    在整个生命周期中,Pod会出现5种状态相位),分别如下:

    • 挂起(Pending):apiserver已经创建了pod资源对象,但它尚未被调度完成或者仍处于下载镜像的过程中
    • 运行中(Running):pod已经被调度至某节点,并且所有容器都已经被kubelet创建完成
    • 成功(Succeeded):pod中的所有容器都已经成功终止并且不会被重启
    • 失败(Failed):所有容器都已经终止,但至少有一个容器终止失败,即容器返回了非0值的退出状态
    • 未知(Unknown):apiserver无法正常获取到pod对象的状态信息,通常由网络通信失败所导致
    5.3.1 创建和终止

    pod的创建过程

    1. 用户通过kubectl或其他api客户端提交需要创建的pod信息给apiServer

    2. apiServer开始生成pod对象的信息,并将信息存入etcd,然后返回确认信息至客户端

    3. apiServer开始反映etcd中的pod对象的变化,其它组件使用watch机制来跟踪检查apiServer上的变动

    4. scheduler发现有新的pod对象要创建,开始为Pod分配主机并将结果信息更新至apiServer

    5. node节点上的kubelet发现有pod调度过来,尝试调用docker启动容器,并将结果回送至apiServer

    6. apiServer将接收到的pod状态信息存入etcd中

    【前端运维】k8s基础 (第一部分)
    pod的终止过程

    1. 用户向apiServer发送删除pod对象的命令
    2. apiServcer中的pod对象信息会随着时间的推移而更新,在宽限期内(默认30s),pod被视为dead
    3. 将pod标记为terminating状态
    4. kubelet在监控到pod对象转为terminating状态的同时启动pod关闭过程
    5. 端点控制器监控到pod对象的关闭行为时将其从所有匹配到此端点的service资源的端点列表中移除
    6. 如果当前pod对象定义了preStop钩子处理器,则在其标记为terminating后即会以同步的方式启动执行
    7. pod对象中的容器进程收到停止信号
    8. 宽限期结束后,若pod中还存在仍在运行的进程,那么pod对象会收到立即终止的信号
    9. kubelet请求apiServer将此pod资源的宽限期设置为0从而完成删除操作,此时pod对于用户已不可见

原文链接:https://juejin.cn/post/7214378356685652029 作者:孟祥_成都

(0)
上一篇 2023年3月25日 下午7:10
下一篇 2023年3月25日 下午7:20

相关推荐

发表评论

登录后才能评论